Characterization of Bio-Oil, Syn-Gas and Bio-Char from Switchgrass Pyrolysis at Various Temperatures
نویسندگان
چکیده
Pyrolitic conversion of lignocellulosic biomass, such as switchgrass and other agricultural residues, to bio-fuels is being considered for national energy security and for environmental advantages. Bio-oil, syngas and bio-char were produced and characterized from switchgrass at 400, 500 and 600 0C by pyrolysis. Bio-oil yield increased from 22 to 37%, syn-gas yield increased from 8 to 26%, and bio-char yield decreased from 48 to 25% with increases of pyrolysis temperatures from 400 to 600 0C. Bio-oil heating value was 36.3 MJ/kg, density was 920 kg/m 3 and viscosity was 10 cST. GC-MS study indicated that the bio-oil contained 37% oxygenates that can be upgraded to transportation fuel in future research. Syn-gas compositional analysis shows that, with increasing pyrolysis temperature, CO2, CO, C2H4 and C2H6 contents increased, whereas H2 and CH4 contents decreased. Part of the syn-gas consisting of H2, CO and CO2, when converted to syn-fuel, can be beneficial to the environment; sulfur free, presence of oxygenates results in less CO emissions and ozone to the atmosphere. Bio-char may be used as a coproduct to enhance soil quality, and for carbon sequestration. Analysis of elemental composition and physical properties of bio-char show increase in carbon content, decrease in oxygen, hydrogen, and nitrogen content, and increase in surface area and pore volume with increases of pyrolysis temperature. The optimized pyrolysis process for bio-oil production in this study will help meet future goals of oil upgrading to produce transportation fuel.
منابع مشابه
Fast Pyrolysis Behavior of Banagrass as a Function of Temperature and Volatiles Residence Time in a Fluidized Bed Reactor
A reactor was designed and commissioned to study the fast pyrolysis behavior of banagrass as a function of temperature and volatiles residence time. Four temperatures between 400 and 600°C were examined as well as four residence times between ~1.0 and 10 seconds. Pyrolysis product distributions of bio-oil, char and permanent gases were determined at each reaction condition. The elemental compos...
متن کاملCatalytic pyrolysis of Alcea pallida stems in a fixed-bed reactor for production of liquid bio-fuels.
Pyrolysis of Alcea pallida stems was performed in a fixed-bed tubular reactor with and without catalyst at three different temperatures. The effects of pyrolysis parameters including temperature and catalyst on the product yields were investigated. It was found that higher temperature resulted in lower liquid (bio-oil) and solid (bio-char) yields and higher gas yields. Catalysts had different e...
متن کاملPyrolysis of Municipal Green Waste: A Modelling, Simulation and Experimental Analysis
Pyrolysis is the thermo-chemical conversion of carbonaceous feedstock in the absence of oxygen to produce bio-fuel (bio-oil, bio-char and syn-gas). Bio-fuel production from municipal green waste (MGW) through the pyrolysis process has attracted considerable attention recently in the renewable energy sector because it can reduce greenhouse gas emissions and contribute to energy security. This st...
متن کاملA Pilot Study of Syngas Production from Bio-oil Thermal Cracking in a Bubbling Fluidized Bed Reactor
A fluidized bed reactor that is operating in the bubbling regime has been developed for the conversion of bio-oils to syngas.The reactor consists of a 7.6 cm I.D. (or internal diameter) bed, with an expanded freeboard. The volume of the reactor can be adjusted to vary the gas residence time. This reactor has been used to carry out either thermal or catalytic cracking for reforming bio-oils.A ga...
متن کاملCharacterization of Bio-oil from Palm Kernel Shell Pyrolysis
Pyrolysis of palm kernel shell in a fixed-bed reactor was studied in this paper. The objectives were to investigate the effect of pyrolysis temperature and particle size on the products yield and to characterize the bio-oil product. In order to get the optimum pyrolysis parameters on bio-oil yield, temperatures of 350, 400, 450, 500 and 550 °C and particle sizes of 212–300 μm, 300–600 μm, 600μm...
متن کامل